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FLOW OF A PLANE JET OF LIQUID FROM A RESERVOIR WITH 
FLEXIBLE WALLS NEAR A SCREEN* 

V.P. ZHITNIKOV 

The problem of the jet overhang created by a jet emerging through an 
orifice in a flexible barrier is considered. A numerical investigation 
is made of the mutual influence of the shape of the flexible reservoir 
walls and the jet parameters for different ratios of the pressure and 
distance to the screen. 

The problem considered here is connected with calculations of the flow in flexible barriers 
ofvessels on air cushions. Previous studies /l, 2/ have considered detached flow around a 
flexible casing near a screen, i.e., flow typical for the chamber scheme of formation of an air 
cushion. The study of flows in a jet scheme involves considerable computational complexity, 
and in this connection the problem is usually simplified by being split into two: computation 
of the shape of the casing on the assumption that the pressure distribution is a step function 
/3/J and computation-of the jet flow from a nozzle device of given shape, in which context the 
nozzle is usually assumed to have straight walls /4, 5/. It is still not known to what degree 
the actual pressure distribution affects the shape of the casing, or how far the latter affects 
the jet parameters. The combined examination of both these problems in /6/, for the case in 
which the physical picture is symmetric about the vertical axis, shows that this influence, for 
real ratios of the width of the orifice in the casing to its length,is negligible. However, 
the problem when there is no symmetry remains open, in particular for large transverse pressure 
drops. 

1. This appears is devoted to a numerical solution of the problem of a planar jet emerging 
from an orifice in a flexible barrier, in its exact non-linear steady-state formulation, for 
unequal pressures pr, and p. and different casing lengths L, and +, from the edges of the 
orifice A and B to the attachment points A' and B' (Fig.l,a). The casing is assumed to be 
absolutely flexible (zero moment), weightless and inextensible; the liquid is assumed to be 
weightless, inviscid and incompressible. The casing is attached at its ends A' and, B' to the 
vertical walls of the channel, and the ends A and B are assumed to be connected by a thin 
thread that does not obstruct the motion of the flow. The thread thereby keeps the ends of the 
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casing at a tiven distance 13 and corresponds to a segment of the common tangent to the casing 
at the points A (and B. 
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Fig.1 

Under these conditions, the problem reduces to determining an analytic function satisfying 
boundary conditions of a special type. The domain corresponding to the flow in the physical 
plane Z is mapped conformally onto the upper half-plane of the complex variable t =z+ iy 
(for the correspondence of the points see Fig.l,bI. The complex potential is 

t 
w(t) = ;c s t-c 

(t - r) (t - p) lit 
-1 

where Q is the liquid discharge in the jet. The boundary conditions for the Joukowsky func- 
tion 

1 dW 
o=iln--=e++iIl~ u0 dZ 

b, e are the absolute value of the velocity vector and its inclination to the horizontal 
axis, vO the velocity on the free surface AS) are written as 

Rew(z) =8(r) = 

- n/2, a<x<l 
P<X<C 9 

Imu,( 
0, - ,<I<-1 

- n, 
0% c<x<= 

In (MO), b<x < P 
(1.2) 

Here vi is the velocity 

equation vi = 1/v< - 2@, - POYP). 

of the liquid on the free surface BP (according to Bernoulli's 

On the sections of the boundary corresponding to the flexible casing, the imaginary and 
real parts of the function o satisfy the Laplace condition: 

de X=*(1-($)"), zE:(--1,a) 

d9 
ds- 

--z$q+(+)"), XE(i,b) 

(1.3) 

Here p is the density of the liquid, T is the tension of the casing (which is the same 
at all points), and s is the arc abscissa measured from the points A and B, respectively. 

2. The boundary-value problem (1.2), (1.3) can be solved by various numerical or numerical- 
analytical methods, such as that described in /7/. The best method to be used here is the 
generalized Levi-Civita method /2/. 

The function o(t) is sought in the form of a sum 

0 0) = WO (Q + 01 (Q + 02 (4 

The function oO(t) satisfies conditions (1.2); in the intervals I--1,aI and 
real part has constant values, equal to the limiting values of e(z) for motion along 
to the attachment points A’ and B’ (0, = Re ~(1 + 0), O2 = Rew(a - 0); the function 
represented by means of a modification of the Keldysh-Sedov formula /S/z 

(2.1) 

iI, bl its 
the casing 
can be 
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(2.2) 

‘/aF - 3, - Bl - 3, - (a + 1) 8Fjab 

tt + 1) (” - P) 

F= @,1(-1,a) -+-I(a,i)+e,1(i,b)+ h+I(b,p)--d(p,.c) 

The real parts of the functions u1 (t) and o, (t) must vanish in the intervals (a,1), (p,c), 

(6 4, as do their imaginary parts in the intervals (-oo,--1) and (b, p). In addition, it 
is required that the real part of o, vanish for s ES (11 a), and that of CIJ~ for sE(--i, a). 
Then these functions can be expressed as 

% 0) = Q?k (WA. (& k = 1, 2 (2.3) 

where (PI 0) and w(t) are functions taking real values over the entire real axis, with the 
exception of the intervals (-1,~) and (I,@, respectively. 

To construct VI(t), we map the upper half of the t-plane, conformally onto the upper,half 
of the unit disc in the &-plane, in such a way that the segment [---1,aI is carried into 
the semicircle. This mapping is accomplished by the transformations 

zr = (2t - a + l)l(u + $1, t = --t1 + u’tl” - 1 

Then, according to the Levi-Civita method, the function PI (t K,)) may be sought as a 
power series with real coefficients. Substituting t(<,) into (2.3) and reducing, we obtain 

(2.4) 

Similarly, to construct 'Pa (4 we map t onto the half-disc in the cn plane so that the 
segment [1, bl is carried into the semicircle. Again applying the Levi-Civita method, we write 

The real 
substitution 

coefficients cm and &, are determined from conditions (l-3), which, after the 

as=-$- @--P)fi-4 
V--Q)@--1(x-PP) 

ax, ?&$-~ 

The function o(t) must be bounded as t+ m; this condition leads to the equality 

2 W c,V,+l &v'm -- 
n ab + y’(2b -a-j-‘r)(Zp-~+I)- 1/(3+b)(2p-b-f) = 

0 (2.‘) 

The problem is solved for given geometrical parameters L,, La, 1, l’, h, #3 (Fig.l,a). Hence 
the following equations must hold: 



(2.8) 

The condition that A and B are connected by a thin thread which does not obstruct the 
liquid flow may be written as 

e (--1) = 8 (b) - aX (2.9) 

Conditions (2.6), written for a finite number of collocation points x,,,, together with 
Eqs.(2.7)-(2.9) and taking (2.2) into account, form a closed system of equations, which can be 
solved by a modified Newton method for the unknown constants c,,, (m = O,..., N), d,(m = O,...,N), 
a, b, c, P, rr h, 01, e,, Q. 

Thus, the solution of problems using the method proposed here ensures exact observance of 
the boundary conditions (1.2) and approximate satisfaction of conditions (1.3), with order of 
approximation dependent on the number N of terms retained in the series. For the computations 
reported below, done with O.l-0.5% accuracy, the number N did not exceed 7-12. 

3. The shape of the casing obtained by solving the problem in its exact formulation 
should be compared with the approximate solution, which is based on the assumption that the 
velocity of liquid flow inside the casing is zero. Then AA’ and BB’ are arcs of circles with 
radii R, and R,. In this case the radii, angles eI, 82, 8A, eB and tension l' may be found 
from the system of equations 

where XA, Y.4, XB, YB are 

!the origin is assumed 

(3.1) 

the coordinates of A and B, determined from the formulae 

XA = l - RI (Sin eA - Sin e,), yi = 2’ + R, (COS 6, _ COS 0,) 

XB = 4 (Sin en - Sine,), YB = -R, (CO9 eB - COS 0,) 

to be at B’). 

4. The results of the computation are shown in Fig.2, where 

(J = (+,,)‘, 2’ = xBl(l - ,‘$ y’ = --y,/(l - f$ -+ 0,5, 

B’ = fw - B) 

ana it is assumed that the geometrical parameters have the following relations to one another: 

1' = 0, (L, + L,)l(I - B) = 1.5, L,l(Z - B) = 0.473 

These relations were chosen so as to ensure that the slope 8s in the approximate solution 
(3.1) would vanish at u = 0.1, and so that the casing configuration would remain unchanged 
for all p. The solid curves correspond to the approximate solution (3.1), the dashed ones to 
the exact solution at fi' =0,X It can be seen that the deviation of the shape of parts of 
the casing from that of arcs of circles isnegligibletof the order of l-3%), even for orifice 
dimensions p comparable with L, and L,. This may be attributed to the high degree of stability, 
and hence the low mobility, of the casing, when turns its concave surface towards the oncoming 
flow (according to the "sail" scheme of /9/). 

Thus, even in the case of an asymmetric casing, the approximate computation is fully 
justified and may be used for practical purposes (in flexible barriers of vessels on: air 
cushions the value of p' is usually at most 0.1-0.2). 

The value of the gap h in problems involving a jet impinging on a screen is an indepen- 
dent (preassigned) parameter and, other things being equal, determines the flow regime of the 
jet, which may be characterized by the jet separation coefficient k = (c-p)I(c--r), which is 
equal to the incoming flow to the region with high pressure p1 divided by the total discharge 
Q. If k = 0 (c =p) the entire jet flows to the right, and the gap h = h, depends on o 
and the geometric parameters fJ, L,, L,, I, 1’. 

The results shown in Fig.2 for'the exact solution correspond to h=h,(o), i.e.,k=O. 
At A<h, the jet emerging from the nozzle is unable, under the action of the transverse 
pressure, to swing fully to the right before impinging on the screen; when this occurs, there- 
fore, it separates into two jets which flow along the screen in opposite directions (Fig.l,a). 
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At h> h, the jet overhang is slightly raised, and beneath it there appears a jet flowing 
from left to right (from the high-pressure region pl); the discharge in this jet increases as 
h - h, increases. The parameters of the jet overhang itself (e.g., the discharge Q, and the 
pressure at the walls and nozzle section) for a nozzle with straight walls depend rather weakly 
on h at h>hh, /5/. 

These properties of a jet impinging on a screen are consequences of conservation laws and 
are valid for jets emerging from various nozzle devices with straight or curved walls, in 
particular, in the case of the flexible nozzle considered here. 

The parameters of the jet overhang for a nozzle with flexible walls at hQho are shown 
in Fig.3, compared with the computed results for a jet issuing from a nozzle with straight 
walls set at the same angles OA and 0~ as the end sections of the casing A and B in the 
approximate solution. Fig.3 shows curves representing the relative parameters: the gap h' =h@ 
and the discharge Q' = Q/(fivJ as a function of the jet separation coefficient k. The geometri- 
cal parameters were taken to be the same as before, o =0,1. As fi'-+ 0 the relative par- 
ameters Q' and h’ for the flexible casing approach those of a straight-walled nozzle. At b'= 
0.3 the discharge falls by lo-20%, and the gap by 20-30%. The reason is that the velocity 
vector of the liquid emerging from the nozzle, avaraged over its entire cross-section, is 
forced to rotate because of the asymmetric distortion of the nozzle walls. 

Thus, in practical computations of jet overhangs for p'> 0.1 one must take the real con- 
figuration of the casing into consideration. As shown above, the shape of the casing may be 
computed approximately. However, replacing the Laplace Eqs.tl.3) by the conditions d0lds = RI, 
does not simplify the solution algorithm. It is therefore necessary to use the exact formulae 
(2.2)-(2.5) for the jet parameters. 
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